EPIBuilding a Sustainable Future
Books
Plan B 3.0: Mobilizing to Save Civilization

Chapter 8. Restoring the Earth: Protecting and Restoring Forests

Protecting the earth’s nearly 4 billion hectares of remaining forests and replanting those already lost are both essential for restoring the earth’s health, an important foundation for the new economy. Reducing rainfall runoff and the associated flooding and soil erosion, recycling rainfall inland, and restoring aquifer recharge depend on simultaneously reducing pressure on forests and on reforestation. 2

There is a vast unrealized potential in all countries to lessen the demands that are shrinking the earth’s forest cover. In industrial nations the greatest opportunity lies in reducing the quantity of wood used to make paper, and in developing countries it depends on reducing fuelwood use.

The rates of paper recycling in the top 10 paper-producing countries range widely, from China and Finland on the low end, recycling 33 and 38 percent of the paper they use, to South Korea and Germany on the high end, at 77 and 66 percent. The United States, the world’s largest paper consumer, is far behind South Korea, but it has raised the share of paper recycled from roughly one fourth in the early 1980s to 50 percent in 2005. If every country recycled as much of its paper as South Korea does, the amount of wood pulp used to produce paper worldwide would drop by one third. 3

The use of paper, perhaps more than any other single product, reflects the throwaway mentality that evolved during the last century. There is an enormous possibility for reducing paper use simply by replacing facial tissues, paper napkins, disposable diapers, and paper shopping bags with reusable cloth alternatives.

The largest single demand on trees—the need for fuel—accounts for just over half of all wood removed from forests. Some international aid agencies, including the U.S. Agency for International Development (AID), are sponsoring fuelwood efficiency projects. One of AID’s more promising projects is the distribution of 780,000 highly efficient wood cookstoves in Kenya that not only use far less wood than a traditional stove but also pollute less. 4

Kenya is also the site of a solar cooker project sponsored by Solar Cookers International. These inexpensive cookers, made from cardboard and aluminum foil and costing $10 each, cook slowly, much like a crockpot. Requiring less than two hours of sunshine to cook a complete meal, they can greatly reduce firewood use at little cost. They can also be used to pasteurize water, thus saving lives. 5

Over the longer term, developing alternative energy sources is the key to reducing forest pressure in developing countries. Replacing firewood with solar thermal cookers, or even with electric hotplates fed by wind-generated electricity or with some other energy source, will lighten the load on forests.

Despite the high value to society of intact forests, only about 290 million hectares of global forest area are legally protected from logging. An additional 1.4 billion hectares are economically unavailable for harvesting because of geographic inaccessibility or low-value wood. Of the remaining area available for exploitation, 665 million hectares are undisturbed by humans and nearly 900 million hectares are semi-natural and not in plantations. 6

Forests protected by national decree are often safeguarded not so much to preserve the long-term wood supply capacity as to ensure that they continue to provide invaluable services such as flood control. Countries that provide legal protection for forests often do so after they have suffered the consequences of extensive deforestation. The Philippines, for example, has banned logging in most remaining old-growth and virgin forests largely because the country has become so vulnerable to flooding, erosion, and landslides. The country was once covered by rich stands of tropical hardwood forests, but after years of massive clearcutting, it lost the forest’s products as well as its services and became a net importer of forest products. 7

Although nongovernmental organizations (NGOs) have worked for years to protect forests from clearcutting, sustainable forestry is now seen as another way to protect forests. If only mature trees are felled, and on a selective basis, a forest and its productivity can be maintained in perpetuity. The World Bank has only recently begun to systematically consider sustainable forestry projects. In 1997, the Bank joined forces with the World Wide Fund for Nature to form the Alliance for Forest Conservation and Sustainable Use; by 2005 they had helped designate 55 million hectares of new forest protected areas and certify 22 million hectares of forest. In mid-2005, the Alliance announced a goal of reducing global net deforestation to zero by 2020. 8

There are several additional forest product certification programs that inform environmentally conscious consumers about the sustainable management of the forest where wood products originate. The most rigorous international program, certified by a group of NGOs, is the Forest Stewardship Council (FSC). Some 88 million hectares of forests in 76 countries are certified by FSC-accredited bodies as responsibly managed. Among the leaders in certified forest area are Canada, with nearly 18 million hectares; Russia, with more than 15 million hectares; Sweden, with 11 million hectares; the United States, with 9 million hectares; and Poland and Brazil, each with close to 5 million hectares. 9

Forest plantations can reduce pressures on the earth’s remaining forests as long as they do not replace old-growth forest. As of 2005, the world had 205 million hectares in forest plantations, an area equal to nearly one third of the 700 million hectares planted in grain. Tree plantations produce mostly wood for paper mills or for wood reconstitution mills. Increasingly, reconstituted wood is substituting for natural wood as the world lumber and construction industries adapt to a shrinking supply of large logs from natural forests. 10

Production of roundwood (logs) on plantations is estimated at 432 million cubic meters per year, accounting for 12 percent of world wood production. This means that the lion’s share, some 88 percent of the world timber harvest, comes from natural forest stands. 11

Six countries account for 60 percent of tree plantations. China, which has little original forest remaining, is by far the largest, with 54 million hectares of plantations. India and the United States follow, at 17 million hectares each. Russia, Canada, and Sweden are close behind. As tree farming expands, it is shifting geographically to the moist tropics. In contrast to grain yields, which tend to rise with distance from the equator and the longer summer growing days, tree plantation yields rise with proximity to the equator and year-round growing conditions. 12

In eastern Canada, the average hectare of forest plantation produces 4 cubic meters of wood per year. In the southeastern United States, where U.S. plantations are concentrated, the yield is 10 cubic meters. But in Brazil, newer plantations may be getting close to 40 cubic meters. While corn yields in the United States are nearly triple those in Brazil, timber yields are the reverse, favoring Brazil by nearly 4 to 1. To satisfy a given demand for wood, Brazil requires only one fourth as much land as the United States, which helps explain why growth in pulp capacity is now concentrated in equatorial regions. 13

Projections of future growth show that plantations can sometimes be profitably established on already deforested, often degraded, land. They can also come at the expense of existing forests. And there is competition with agriculture as well, since land that is suitable for crops is also good for growing trees. Water scarcity is yet another constraint. Fast-growing plantations require abundant moisture.

Nonetheless, the U.N. Food and Agriculture Organization (FAO) projects that as plantation area expands and yields rise, the harvest could more than double during the next three decades. It is entirely conceivable that plantations could one day satisfy most of the world’s demand for industrial wood, thus helping to protect the world’s remaining forests. 14

Reed Funk, professor of plant biology at Rutgers University, believes the vast areas of deforested land can be used to grow trillions of trees bred for food (mostly nuts), fuel, and other purposes. Funk sees nuts used to supplement meat as a source of high-quality protein in developing-country diets. He also sees trees grown on this deforested land being converted into ethanol for automotive fuel. 15

Historically, some highly erodible agricultural land in industrial countries has been reforested by natural regrowth. Such is the case for New England in the United States. Settled early by Europeans, this geographically rugged region was suffering from cropland productivity losses because soils were thin and the land was rocky, sloping, and vulnerable to erosion. As highly productive farmland opened up in the Midwest and the Great Plains during the nineteenth century, pressures on New England farmland lessened, permitting cropped land to return to forest. New England’s forest cover has increased from a low of roughly one third two centuries ago to four fifths today, slowly regaining its original health and diversity. 16

A somewhat similar situation exists now in parts of the former Soviet Union and in several East European countries. As central planning was replaced by market-based agriculture in the early 1990s, unprofitable marginal land was abandoned. Precise figures are difficult to come by, but millions of hectares of farmland are now returning to forest. 17

South Korea is in many ways a reforestation model for the rest of the world. When the Korean War ended, half a century ago, the mountainous country was largely deforested. Beginning around 1960, under the dedicated leadership of President Park Chung Hee, the South Korean government launched a national reforestation effort. Relying on the formation of village cooperatives, hundreds of thousands of people were mobilized to dig trenches and to create terraces for supporting trees on barren mountains. Se-Kyung Chong, researcher at the Korea Forest Research Institute, writes, “The result was a seemingly miraculous rebirth of forests from barren land.” 18

Today forests cover 65 percent of the country, an area of roughly 6 million hectares. While driving across South Korea in November 2000, it was gratifying for me to see the luxuriant stands of trees on mountains that a generation ago were bare. We can reforest the earth! 19

In Turkey, a mountainous country largely deforested over the millennia, a leading environmental group, TEMA (Türkiye Erozyona Mücadele, Agaclandirma) has made reforestation its principal activity. Founded by two prominent Turkish businessmen, Hayrettin Karuca and Nihat Gokyigit, TEMA launched in 1998 a 10-billion-acorn campaign to restore tree cover and reduce runoff and soil erosion. During the years since, 850 million oak acorns have been planted. The program is also raising national awareness of the services that forests provide. 20

On the other side of the world, in Niger, farmers faced with severe drought and desertification in the 1980s began leaving some emerging acacia tree seedlings in their fields as they prepared the land for crops. As these trees matured they slowed wind speeds, thus reducing soil erosion. The acacia, a legume, fixes nitrogen, thus enriching the soil and helping to raise crop yields. During the dry season the leaves and pods provide fodder for livestock. The trees also supply firewood. 21

This approach of leaving 20–150 seedlings per hectare to mature on some 3 million hectares has revitalized farming communities in Niger. Assuming an average of 40 trees per hectare reach maturity, this comes to 120 million trees. This practice also has been central to reclaiming 250,000 hectares of abandoned land. The key to this success story was the shift in tree ownership from the state to individual farmers, giving them the responsibility for protecting the trees. 22

Shifting subsidies from building logging roads to planting trees would help protect forest cover worldwide. The World Bank has the administrative capacity to lead an international program that would emulate South Korea’s success in blanketing mountains and hills with trees.

In addition, FAO and the bilateral aid agencies can work with individual farmers in national agroforestry programs to integrate trees wherever possible into agricultural operations. Well-chosen, well-placed trees provide shade, serve as windbreaks to check soil erosion, and can fix nitrogen, reducing the need for fertilizer.

Reducing wood use by developing more-efficient wood stoves and alternative cooking fuels, systematically recycling paper, and banning the use of throwaway paper products all lighten pressure on the earth’s forests. But a global reforestation effort cannot succeed unless it is accompanied by the stabilization of population. With such an integrated plan, coordinated country by country, the earth’s forests can be restored.

Previous Table of Contents Next

ENDNOTES:

2. Remaining forests from “Table 2.1. Distribution of Forests by Subregion 2005,” in U.N. Food and Agriculture Organization (FAO), Forest Resources Assessment (FRA) 2005 (Rome: 2006).

3. FAO, ForesSTAT Statistics Database, at faostat.fao.org, updated 22 December 2006; U.S. Environmental Protection Agency, Municipal Solid Waste Generation, Recycling, and Disposal in the United States: Facts and Figures for 2005 (Washington, DC: 2005).

4. Fuelwood as a proportion of total harvested wood from FAO, op. cit. note 3; Daniel M. Kammen, “From Energy Efficiency to Social Utility: Lessons from Cookstove Design, Dissemination, and Use,” in José Goldemberg and Thomas B. Johansson, Energy as an Instrument for Socio-Economic Development (New York: U.N. Development Programme, 1995).

5. Kevin Porter, “Final Kakuma Evaluation: Solar Cookers Filled a Critical Gap,” in Solar Cookers International, Solar Cooker Review, vol. 10, no. 2 (November 2004); cost from “Breakthrough in Kenyan Refugee Camps,” at solarcooking.org/kakuma-m.htm, viewed 30 July 2007.

6. FAO, Agriculture: Towards 2015/30, Technical Interim Report (Geneva: Economic and Social Department, 2000), pp. 156–57.

7. Johanna Son, “Philippines: Row Rages Over Lifting of Ban on Lumber Exports,” InterPress Service, 17 April 1998; John Aglionby, “Philippines Bans Logging After Fatal Floods,” Guardian (London),6 December 2004; Republic of the Philippines, “President Okays Selective Lifting of Log Ban,” press release (Manila: 7 March 2005).

8. Alliance for Forest Conservation and Sustainable Use, “WWF/World Bank Forest Alliance Launches Ambitious Program to Reduce Deforestation and Curb Illegal Logging,” press release (New York: World Bank/WWF, 25 May 2005); certified area from Alliance for Forest Conservation and Sustainable Use, “World Bank/WWF Alliance for Forest Conservation & Sustainable Use: Questions & Answers,” World Bank/WWF, at www.worldwildlife.org/alliance, viewed 30 July 2007; new protected area from Alliance for Forest Conservation and Sustainable Use, “WWF/World Bank Alliance Targets,” at www.worldwildlife.org/alliance, viewed 30 July 2007.

9. Forest Stewardship Council, FSC Certified Forests (Bonn, Germany: 2005), pp. 34, 40, 53; Forest Stewardship Council, “FSC Certification: Maps, Graphs, and Statistics (July 2007),” PowerPoint Presentation, at www.fsc.org/en/whats_new/fsc_certificates/maps, viewed 30 July 2007.

10. A. Del Lungo, J. Ball, and J. Carle, Global Planted Forests Thematic Study: Results and Analysis (Rome: FAO Forestry Department, December 2006); grain area from U.S. Department of Agriculture (USDA), Production, Supply and Distribution, electronic database, at www.fas.usda.gov/psdonline, updated 10 August 2007.

11. R. James and A. Del Lungo, “Comparisons of Estimates of ‘High Value’ Wood With Estimates of Total Forest Plantation Production,” table in The Potential for Fast-Growing Commercial Forest Plantations to Supply High Value Roundwood (Rome: FAO Forestry Department, February 2005), p. 24; FAO, op. cit. note 3.

12. Plantation area in “Table 4. Total Planted Forest Area: Productive and Protective—61 Sampled Countries,” in Del Lungo, Ball, and Carle, op. cit. note 10, pp. 66–70; Ashley T. Mattoon, “Paper Forests,” World Watch, March/April 1998, pp. 20–28.

13. Plantation yields from Mattoon, op. cit. note 12; corn yields from USDA, op. cit. note 10.

14. FAO, op. cit. note 6, p. 185; Chris Brown and D. J. Mead, eds., “Future Production from Forest Plantations,” Forest Plantation Thematic Paper (Rome: FAO, 2001), p. 9.

15. Reed Funk, letter to author, 9 August 2005.

16. M. Davis et al., “New England—Acadian Forests,” in Taylor H. Ricketts et al., eds., Terrestrial Ecoregions of North America: A Conservation Assessment (Washington, DC: Island Press, 1999); David R. Foster, “Harvard Forest: Addressing Major Issues in Policy Debates and in the Understanding of Ecosystem Process and Pattern,” LTER Network News: The Newsletter of the Long Term Ecological Network, spring/summer 1996; U.S. Forest Service, “2006 Forest Health Highlights,” various state sheets, at fhm.fs.fed.us, viewed 2 August 2007.

17. C. Csaki, “Agricultural Reforms in Central and Eastern Europe and the Former Soviet Union: Status and Perspectives,” Agricultural Economics, vol. 22 (2000), pp. 37–54; Igor Shvytov, Agriculturally Induced Environmental Problems in Russia, Discussion Paper No. 17 (Halle, Germany: Institute of Agricultural Development in Central and Eastern Europe, 1998), p. 13.

18. Se-Kyung Chong, “ Anmyeon-do Recreation Forest: A Millennium of Management,” in Patrick B. Durst et al., In Search of Excellence: Exemplary Forest Management in Asia and the Pacific, Asia-Pacific Forestry Commission (Bangkok: FAO Regional Office for Asia and the Pacific, 2005), pp. 251–59.

19. Ibid.

20. Turkish Foundation for Combating Soil Erosion (TEMA), at english.tema.org.tr, viewed 31 July 2007.

21. U.S. Embassy, Niamey, Niger, “Niger: Greener Now Than 30 Years Ago,” reporting cable circulated following national FRAME workshop, October 2006; Chris Reij, “More Success Stories in Africa’s Drylands Than Often Assumed,” presentation at Network of Farmers’ and Agricultural Producers’ Organisations of West Africa (ROPPA) Forum on Food Sovereignty, 7–10 November 2006.

22. U.S. Embassy, op. cit. note 21; Reij, op. cit. note 21.

 

Copyright © 2008 Earth Policy Institute